
In Proceedings of the 2nd NASA International Workshop on Planning and Scheduling in Space. San Fransisco, CA. 2000

Reactive prioritization

Michael Freed
MS 262-4 NASA Ames Research Center

Moffett Field, CA 94035

mfreed@mail.arc.nasa.gov

Abstract

In many interesting task environments, agents must
decide priority among competing tasks under
considerable uncertainty. Moreover, which kinds of
priority-relevant information are available for a
decision will vary in different situations. An ideal
priority determination process should use whatever
information is available, even it becomes so just
before a decision is required or after a task has been
awarded priority and begun executing. In this paper,
we identify several kinds of priority-relevant of
information and describe a flexible priority
computation method that uses whatever kinds are
available in a given situation.

Introduction

In everyday environments such as the kitchen or
automobile, people usually have many things they could
reasonably be doing at a given moment. Some of these
tasks are independent and can be pursued concurrently.
Others interact in ways that demand a choice: which
should be given priority and carried out immediately?
Which should be deferred, interrupted, or aborted?

For artificial agents, one approach to making such
decisions is to identify all tasks to be carried out and all
the constraints on those tasks, then search for the best
possible order. While this can produce optimal or nearly
optimal action orderings, it is only practical in highly
predictable environments where needed actions and
relevant constraints are known in advance. Many
everyday environments are not predictable in this sense.
Unplanned actions may be needed to handle unexpected
events – e.g. a car suddenly cuts in just ahead, the phone
rings, an awful song comes on the radio. Similarly, the
timing and specific actions needed to carry out a task may
not may not be known until it is nearly time to carry them
out. For example, an agent may know that it will have to
turn left onto Elm Street, but not know which particular
driving maneuvers will be needed to negotiate traffic or
whether it will first have to stop at a red traffic signal.

An alternative approach, reactive prioritization, is
to make rapid priority decisions just before committing to

a course of action. Unlike the more deliberative approach
in which priority decisions are made arbitrarily far in
advance of execution, a reactive prioritization process
makes such decisions in response to newly available
information about, e.g., which tasks are eligible for
execution at a given moment, whether they interact, and
what timing constraints apply to each. While these kinds
of information are sometimes available far in advance,
they often remain uncertain until the last moments before a
task becomes enabled.

Pervasive, priority-relevant uncertainty has at
least two important implications. The first, as discussed, is
that no maximally-informed priority decision for a task is
possible until that task is eligible for execution. Thus,
priority must be determined at execution-time, not (only)
in the course of long-term planning. The second is that
priority decisions will often have to be made in the
absence of potentially significant information. For
instance, not knowing about an impending task to answer
the phone makes it impossible to choose between tasks on
the basis of which better tolerates interruption. The best an
agent can do is to use whatever information is available
when a final (or otherwise consequential) priority decision
is needed.

In designing reactive priority mechanisms, it is
important to consider what types of information are likely
to be available at decision-time and how each type should
influence task priority. In this paper, we identify several
kinds of information that may be available, each of which
can be used as a heuristic basis for deciding priority.
These heuristics are combined into a more general
prioritization process that takes advantage of situations in
which more than one kind of priority-relevant information
is available. This paper extends work reported in Freed
(1998) and has been implemented as part of a plan
execution system used to simulate expert human operators
doing complex tasks (Freed and Remington, 1997).

Heuristic Prioritization

Tasks need to be prioritized when they conflict. For
example, when two tasks require looking at widely
separated points in the visual field, prioritization is needed

to decide which gets to control the orientation of visual
sensors. In some cases, not getting priority merely implies
that a task will have to wait (or be interrupted if it is
already ongoing). In others, the task cannot wait; deferring
it means causing it to fail. Deferring a task imposes a
(possibly zero) expected cost. More specifically, each task
can be viewed as having a set of deadlines, each of which
incurs a specific expected cost if missed; deferring a task
increases the likelihood that one or more of its deadlines
will be missed. For instance, the task of getting home
from work might involve deadlines for arriving on time for
a planned dinner, seeing a televised sports event from the
beginning, and having time with the kids before they go to
bed. The longer the task of driving home is deferred, the
greater the risk of “deadline bust” to each associated
deadline. The job of an agent’s priority mechanisms is to
minimize the total expected cost of deadline busts across
all tasks over an extended period.

Designing a prioritization mechanism able to do
this job in an uncertain task environment requires first
identifying kinds of priority-relevant information that
might be available at decision-time. In the worst case, the
agent only knows the identity of tasks currently being
considered for execution. In this situation, there is no
choice but to select randomly between competing tasks. A
somewhat more benign case occurs if there is information
on one priority-relevant task attribute. These attributes
include anything that affects the likelihood of missing a
task deadline including: (1) the time remaining until a
particular deadline bust, (2) the cost of missing a deadline,
(3) task duration, and (4) the time cost resulting from task
interruption. The role of each of these attributes in
determining priority can be expressed as a set of heuristic
decision rules as follows (cf. Firby, 1989):

All else being equal, …
 do the task with the nearer deadline first
 do the task with the most important deadlines first
 do the briefer task first
 do (continue) the ongoing task rather than switch

These rules make it possible to decide priority

when only one kind of information is available. Ideally, a
prioritization mechanism will make use of more
information if more is available. To understand how such
a mechanism should be realized, it is worth considering
each of these information types in greater depth.

Urgency. Prioritization is only an issue because there may
be undesirable consequences to deferring a task. The idea
of a deadline, after which undesirable consequences will
occur, is thus likely to be a central feature of any approach
to prioritization. We generalize this idea slightly by
treating deadline-pressure as one (very important) source
of urgency. Others possible sources include value-decay-
pressure in which the cost of waiting comes gradually

rather than all at once (e.g. dinner slowly cools down and
becomes less enjoyable to eat), and hazard-pressure where
the likelihood of an undesirable occurrence remains
constant for a given interval rather than approaching
certainty during a given interval (e.g. lightbulb goes out).
These forms of urgency differ in the shape of the expected
cost curve. For a deadline, the curve remains relatively
flat for a while and then quickly approaches maximum. A
hazard function smoothly asymptotes to maximum
following a curve of the form 1-bt {0<b<1}. Value decay
tends to increase linearly to maximum. However, in all
forms of urgency, longer execution delay means greater
expected cost.

Importance. Another crucial factor is the measure of how
bad it would be to miss a given deadline. 1 This is
especially relevant if meeting a deadline for one task
precludes meeting a deadline associated with another. In
such cases, the best thing to do is to make the more
important deadline – i.e. avoid the effects of the bust with
greater negative utility.

Duration. A task’s duration affects its proper priority in
two ways. First, doing one task requires deferring all
competing tasks, thereby increasing the risk of deadline-
busts for all these tasks’ associated deadlines. Thus, as a
task’s duration increases, so does opportunity cost of
carrying it out. The importance of this effect increases not
only with increased task duration, but also with the number
of tasks deferred. It is often desirable to execute a number
of brief tasks before starting one of longer duration, even if
the lengthier task is more important.

A second effect of duration is to reduce the
amount of time available before a given task must be
started (or resumed). For instance, a 2 minute duration
task with a 5 minute completion deadline should be started
within 3 minutes; doubling the duration but leaving the
deadline constant would allow only one minute to start the
task. This urgency-increase effect opposes the effect of
increased opportunity cost since a longer duration task
apparently needs to be started sooner.

The heuristic “all else being equal, do the briefer
task first” applies because the opportunity cost effect is
greater than the increased-urgency effect. If we assume
that competing tasks have the same number of equally
distant and equally costly deadlines, then the only basis for
comparison is the amount of increased risk (a
monotonically increasing function of deferral time) to

1 Currently, all forms of urgency are treated analogously to
deadline-pressure. Value-decay-pressure is handled by selecting
some decay threshold to treat as a deadline-bust. Thus, one
might assume that dinner will stay hot for 5 minutes; after this
(arbitrary) deadline, it is assumed to have become “not hot” and
thus a suffered cost. Hazard pressure is handled by selecting a
probability threshold p and treating the time taken for an
undesired event to have occurred with probability p as a deadline.

each. For example, assume there are five tasks to do, four
with 1 minute durations and one with a 5 minute duration.
Doing the latter task first imposes a combined 26 minutes
of deferral on all tasks. Doing the task last imposes only
10 minutes. The next section discusses an approach to
prioritization that accommodates both duration effects.

Interruption cost. Priority should be recomputed
whenever changed circumstances indicate that a previous
priority decision may have become obsolete. For example,
when a task becomes enabled and thus eligible for
execution, its priority should be assessed against any
competing tasks including those ongoing. Similarly,
situation changes that either lower the likely priority value
of an ongoing task or increase the value of a previously
deferred task should trigger reassessment of priority
decisions. When reprioritization reveals that an ongoing
task should have lower priority than a competitor, the task
should be interrupted.

However, interruption imposes costs that should
be considered when computing the priority of an ongoing
task. For instance, interruption may require time-
consuming transitional activities to avoid consequences of
an overly-sudden interruption – e.g. pulling over to the
side of the road to avoid crashing when interrupting a
driving task. Other activities may be required to maintain
task viability during the interruption interval and to
correctly resume (Freed 1998). These activities require
time and resources that may be useful for other tasks and
thus impose an opportunity cost.

 Interruption may impose other costs as well.
Important preconditions may be undermined during the
interruption, making the task impossible or more
expensive. Facilitating conditions (opportunities) may
lapse, raising task cost.

Priority mechanisms should take the expected
cost of an interruption into account, suppressing
interruptions unless the expected benefit exceeds the
expected cost. When cost/benefit information is not
available, the agent should assume a greater-than-zero
interruption cost and inhibit interruption.

Robust Prioritization

The four heuristics listed above are useful for comparing
candidate tasks, each on the basis of a single type of
priority-relevant information. Ideally, an agent should take
advantage when more information is available. One fairly
simple case to consider is when the agent knows both the
deadline proximity and duration of candidate tasks. Since
deadline describes when the task should be completed,
duration can be subtracted from this time value to
determine when the task should be started. This is much
more valuable measure of task urgency than deadline

alone, since it makes it possible to determine how much
time can be spent on alternative tasks before the risk of a
deadline bust rises dramatically. Thus, as measured
urgency (U = deadline-proximity – task-duration)
approaches zero, priority should rise to task maximum.

The computation of urgency can be further
refined by considering the effect of deferring a task in
favor of some alternative. For example, if a task has a 5
minute completion deadline and lasts 3 minutes, then
deferring it in favor of a competitor that also takes 3
minutes to carry out will cause a missed deadline. To
avoid such scenarios, priority mechanisms should not only
consider a task’s duration, but also the duration of the
strongest competing task. When the requisite information
is available, priority should be determined on the basis of a
tasks’ adjusted-urgency (U’ = U – competitor-duration).

A more complicated case is when information on
both the time remaining until deadline (unadjusted
urgency) and the cost of missing the deadline is available.
What makes this complex is that the relevance of these two
factor depends on another factor: how busy the agent is in
the timeframe in which the tasks needs to be carried out.
When the agent is not very busy and, thus, probably has
time to do all intended tasks, the priority mechanism’s job
should be to make sure that a bad ordering decision
doesn’t lead to an unnecessarily missed deadline. In this
case, urgency is a highly relevant determinant of priority
while importance (the cost of a missed deadline) is largely
irrelevant. In contrast, when the agent is so busy that there
isn’t time to do everything, missed deadlines are
inevitable. In this case, the priority mechanism needs to
make sure that important deadlines are met, even if that
means allowing less important deadlines to bust. To
handle both importance and urgency in a unified
framework, priority mechanisms need to employ some
measure of busyness.

To see how busyness might be usefully
represented, it is worth formally characterizing the overall
purpose of the prioritization process. A useful
characterization, as indicated earlier, is that the process
should try to minimize the long-term cumulative cost of
missed deadlines. With respect to any given priority
decision, the task whose deferral would add most to this
total cost should be selected. A task’s expected cost of
deferral (ECD) is computed by summing the expected
deferral cost for each of its associated deadlines. Thus,

???
deadlines

d

dCostdptaskECDtaskiority)(*)()()(Pr

where d is a task’s deadline, p(d) is the probability of
missing d if task is deferred in favor of its current strongest
competitor, and C is the cost of missing d. The identity
and cost (importance) of the task’s deadlines are assumed
to be known. The probability of missing a given deadline

must be derived from how much time is available to do the
task, U’ (adjusted-urgency), and how great the task load
will be (busyness) when the task, if deferred, again
becomes eligible for execution. In particular, measured
busyness must be a probability distribution B of minimum
task delays – i.e. the probability that a deferred task will
have to be further deferred for greater than or equal to a
given time t. The value of p(d) is thus B(t) for given
busyness distribution B with t = U’.
 Consider a simple example. Task Q is eligible for
execution. Its duration is 2 minutes. It has one associated
deadline whose importance (the cost if the deadline is
missed) is 7 and whose urgency (how much time is left to
complete the task in order to avoid missing the deadline)
is 5 minutes. Q is competing with other tasks for priority
including the current strongest contender, R. R’s duration
is also 2 minutes. If R is selected for execution over Q,
there will be (5-2-2) = 1 minute left in which to start Q
after R is completed. This value is Q’s adjusted-urgency.
Given a busyness distribution B in which the value B(1
minute) = .3, .3 is the likelihood that, given all the other
tasks that need doing, there will be at least a 1 minute
delay before a given task can be started. The cost of
deferring Q is thus .3*7 = 2.1. If this value is higher than
that for R, Q becomes the strongest competitor in the
priority competition.
 Three problems remain to be solved to make this
approach viable. The first and simplest one is to handle
the possibility that needed information is not available –
i.e. if a task’s duration, deadline urgencies, or deadline
importance values are unknown. The simplest approach is
to factor out the influence of the missing information by
assuming the same value as that of the task’s strongest
current competitor. For instance, if R in the example
above has duration 2 minutes but Q’s duration is unknown,
assume a duration of 2 minutes. Similarly, if an
unadjusted urgency value is missing, set it equal to the
average of R’s urgency values. If R’s value is unknown,
an arbitrary default value can be used instead.
 The second problem is how to determine priority
for an ongoing task. As mentioned earlier, interrupting an
ongoing task may entail various costs such as the
opportunity cost of time spent safely winding down
(safing) the task and then, later, restoring any
preconditions violated during the interruption interval.
Our approach is to assume that the priority of an ongoing
task is ECD + expected-interrupt-cost where the latter term
is either known for the task or defaults to some nominal
positive value. This has the effect of inhibiting
interruptions in proportion to their undesirable
consequences (Freed, 1998; cf. Gat, 1992).
 The third problem is how to determine the shape
of the minimum delay (busyness) distribution B. A few
shape attributes are obvious. For example, p(0) = 1.0 – i.e.
it is certain that a task will be delayed for at least 0 time.
B is monotonically decreasing; thus, the more urgent the

task, the greater likelihood of an unavoidable deadline
bust. B asymptotes to 0 since, in principle, there is no
limit to the amount of delay that might be required.
Beyond this, B’s distribution depends on various factors as
described below:

Projection. In delaying a task for less important but more
urgent alternatives, an agent risks losing the opportunity
for timely execution because of emerging, higher priority
tasks. To prevent this, the agent should take advantage of
any predictions it can make about the set of future tasks a
given current task will have to compete with if deferred.
These future tasks can be divided into two categories:
known and unknown. Known tasks are those that the
agent already intends to execute when it gets a chance,
including those whose enabling preconditions have not yet
been satisfied. The unknowns include not-yet-specified
subtasks of known tasks and tasks that do not yet exist
(e.g. to handle a future phone call). Even the unknowns
can be predicted to some degree. For example, an agent
may know that this is a time of day when many phone calls
should be expected, even if no specific answer-phone-call
tasks currently exist. Similarly, it may be possible to
project the most likely decomposition of a task into
subtasks, even if the final decomposition decision has not
been made.

The best possible delay estimate would, of course,
be based on the most detailed and complete possible
projection of future tasks. The described prioritization
approach uses very coarse projections. Only a single
known task, the strongest current competitor, is treated
individually (used to compute adjusted-urgency). All
other tasks including lower priority enabled tasks, non-
enabled tasks, and unknown tasks, are considered in the
aggregate via the busyness function. If instead, all known
tasks were handled by explicit projection, the busyness
function would only have to account for residual task-load
– i.e. the “unknown” tasks.

Thus, the proper shape of this function depends
on how projection is used in the prioritization process as a
whole. Given the modest use of projection in our current
approach, the function should incorporate any relevant,
available information about future tasks. For example, if
the total number or average duration of known tasks is
relatively high, the distribution should be skewed towards
relatively long delays. If an imminent surge of new (not
yet existing) tasks is expected, expected delay should be
proportionately greater.

Task attributes. Any delay distribution must make
additional assumptions about the effect of task attributes –
particularly duration and importance – on future priority
decisions. Importance is significant because the more
important a task is, the higher its priority will rise as the
task deadline nears. This implies that importance should
have two opposing effects on priority. Since the cost of

missing an important deadline is relatively great,
importance increases expected-deferral-cost and, thus,
priority. But because the likelihood of having to further
delay an important task for even more important tasks is
relatively low, the probability of a deadline bust is lower,
making priority lower. The sum of these opposing effects
should vary with urgency: as the deadline approaches, it is
more crucial that the task be a strong competitor now
rather than permit a delay that counts on it being a strong
competitor later.
 To the extent that short tasks have an advantage
in gaining priority, a task’s duration is also relevant for
determining what kind of deferral distribution should be
assumed. By raising a task’s urgency in proportion to it’s
strongest competitor’s duration, the prioritization process
outlined above essentially penalizes long duration tasks –
i.e. it has a strong short-duration bias. This bias should be
taken into account in the expected-delay distribution by
assuming relatively short delays for brief tasks.
 Task duration affects B in other ways as well.
First, longer tasks can often be interrupted for brief periods
without significant effect. For example, a driver can look
to the side of the road for a brief period without much risk,
even though a longer look would significantly interfere
with driving. An agent can take advantage a task’s
insensitivity to interruption to carry out brief tasks (Freed
1998). Similarly, lengthy tasks often have built in idle
(slack) times during which brief tasks can be “fit in.” For
example, a driver stopped at a red light may have a brief
time to use hands and eyes freely for non-driving tasks.
The ability to execute brief tasks during idle intervals or
within permissive interruption constraints means that short
tasks can effectively be run concurrently with longer tasks
they nominally conflict with. All of these effects imply
that shorter tasks are less likely to be delayed for a long
period.

Domain specificity. Another set of factors affecting the
true distribution of task delays arises from characteristics
of the task environment. This is especially the case for
estimating the incidence of new tasks (e.g. rate of new
phone calls, new customers at a bank, new aircraft for an
air traffic controller,..). Environmental factors can also
affect busyness less directly. For example, in conditions
that make task failure likely, more time will have to ve
spent on failure recovery. This essentially increases
expected task duration and, thus, busyness.

An approach that makes it possible to address all of these
factors is to assume a normal distribution of delays, using
the complement of the cumulative distribution (a sigmoid)
for B; each factor mentioned above affects the mean of the
distribution. For instance, an increase in the expected
incidence of new tasks increase the mean while a reduction
in the average importance of known tasks reduces it. To
account for the very significant effect of task duration D,

we assume a default distributional mean equal to D. This
captures the idea that a task is typically competing with a
small number of tasks of about its own duration. Tasks that
are significantly shorter will likely be executed earlier and
with little effect on overall delay, while tasks that are much
longer will be executed later or pseudo-concurrently.

Conclusion

In realistically uncertain worlds, an agent often lacks
advance knowledge of what new tasks will arise and what
specific actions will be needed to make progress at known
tasks; thus, it cannot consider characteristics of these
unspecified later actions when deciding order among
earlier ones. Moreover, an agent often cannot be sure
when an opportunity to execute its tasks will arise, and
therefore cannot decide whether the task should come
before or after some other, independently enabled task.
With “when” and “what” uncertain, agents must instead
reactively prioritize between currently eligible tasks based
on whatever information is available.
 This paper presents an approach based on the idea
that the role of a prioritization process should be to
minimize the cost of missed deadlines over a lengthy
interval. The approach is designed to make best use of
whatever priority-relevant is available at decision-time. If
some useful piece of information is not available, the
priority process should behave in a robust fashion,
essentially falling back on simpler, more general decision
heuristics. The greatest challenge has been to design an
approach that flexibly decides whether to focus on meeting
urgent deadlines or whether to insure that the most
important deadlines are met.
 The described approach captures a wide range of
factors affecting priority decision-making under
uncertainty. Furthermore, it is simple and computationally
inexpensive enough to be realized in a practical agent
architecture (Freed and Remington, 1997; Freed, 1998).
However, the approach falls short of ideal in several of
ways. First, contingent behaviors associated with a task
such as dealing with failure, managing periodic behavior,
coping with undesirable side-effects, are important
contributors to task load but have yet been accounted for.
Perhaps more importantly, the current approach makes too
little use of projection The current approach can only
make use of information on a single projected task (the one
with the highest current priority), even though
characteristics of other tasks may be known. Finally, the
problem of setting the crucial mean-delay parameter is left
almost entirely to domain-specific rules. While there may
be no avoiding the need for such rules, the qualitative
discussion of the effects of various factors does not
provide a clear methodology for creating them. Future
work should remedy these deficiencies.

References

Firby, R.J. 1989. Adaptive Execution in Complex
Dynamic worlds. Ph.D. thesis, Yale University.

Freed, M. & Remington, R.W. 1997. Managing Decision
Resources in Plan Execution. In Proceedings of the
Fifteenth Joint Conference on Artificial Intelligence,
Nagoya, Japan.

Freed, M. (1998b) Managing multiple tasks in complex,
dynamic environments. In Proceedings of the 1998
National Conference on Artificial Intelligence. Madison,
Wisconsin.

Gat, Erann. 1992. Integrating planning and reacting in
heterogeneous asynchronous architecture for controlling
real-world mobile robots. In Proceedings of 1992
National Conference on Artificial Intelligence.

